Controlling the magnetic anisotropy of RumIrn (m + n = 3) clusters using the MgO(001) substrate†
Abstract
Large perpendicular magnetic anisotropy energy (MAE) and flexible regulation of the magnitude and direction of MAE have great potential for application in information storage devices. Here, utilizing first-principles calculations, we investigated the magnetic properties of free and MgO(001) supported RumIrn clusters (RumIrn@MgO(m + n = 3)). The results indicate that the MAE of mixed clusters increases with the number of Ir atoms due to Ir having a strong coupling between the non-degenerate dxy and dx2−y2 states. The MAE of free Ir3 is −8.18 meV with the easy magnetization direction parallel to the x-axis, while the MAE of supported Ir3 on the MgO substrate increases by a factor of 2.6, and the easy magnetization axis of the structure is shifted to a direction perpendicular to the substrate surface. This change in MAE is due to the significant enhancement in the coupling between the non-degenerate dyz and dx2−y2 states near the Fermi level of Ir3 atoms. Moreover, Ir3@MgO possesses high thermodynamic stability. These results give a new method for manipulating MAE and the direction of easy magnetization, which has great potential for application in magnetic nanodevices.