Effect of (H2O)n (n = 1 and 2) on HOCl + Cl reaction†
Abstract
In the present work, we investigate the effect of water molecules (H2O and (H2O)2) on HOCl + Cl˙ → ClO˙ + HCl (R1), and HOCl + Cl˙ → OH˙ + Cl2 (R2) reactions using quantum chemical and kinetics calculations. The present investigation suggests that a water molecule decreases the energy barrier of both reactions significantly, compared to uncatalyzed reaction. However, the effective rate constants for the water catalyzed path for both channels (R1 and R2) were found to be lower than the bimolecular rate constant of the uncatalyzed path. Further, it was found that the R2 reaction will dominate over the R1 reaction, with or without catalyst. Interestingly, the uncatalyzed title reaction was found to be two times faster than the HOCl + OH˙ reaction, but in the presence of water, HOCl + OH˙ becomes the dominant reaction compared to the HOCl + Cl˙ reaction in the atmosphere. In addition, the concentration of bimolecular complexes formed in the presence of a catalyst are found to be higher than the precursor molecule of the uncatalyzed reaction, which suggests that in the presence of catalyst, the HOCl + Cl˙ reaction would favor the catalyzed path rather than the uncatalyzed path.