Issue 3, 2023

Efficient and accurate density-based prediction of macromolecular polarizabilities

Abstract

Accurately and efficiently predicting macromolecules’ polarizabilities is an open problem. In this work, we employ a few simple density-based quantities from the information-theoretic approach (ITA) to predict polarizability of proteins. We first build quantitative structure/property relationships between molecular polarizabilities and ITA quantities. We then verify the broad applicability of ITA quantities for polarizability prediction for inorganic, organic, and biological systems with both localized and delocalized electronic structure. As a proof-of-concept application, we predict the molecular polarizabilities of complex proteins. Based on the linear regression equations for 20 natural amino acid residues, 400 dipeptides, and 8000 tripeptides, one then predicts the molecular polarizability of a larger peptide or even a protein once the molecular wavefunction is obtained. Because it is extremely costly to determine the wavefunction for a macromolecule like a protein, we propose to combine the ITA with the linear-scaling generalized energy-based fragmentation (GEBF) method to predict the macromolecular polarizability. In GEBF, the total molecular polarizability is obtained as a linear combination of the corresponding quantities from a series of small subsystems. We can predict them based on the subsystem wavefunction and linear regression equations rather than compute them from the nearly-intractable coupled-perturbed Hartree–Fock or Kohn–Sham equations for the whole macromolecule. Computational results showcase that the GEBF-ITA protocol should be an inexpensive yet accurate theoretical tool for predicting macromolecular polarizabilities.

Graphical abstract: Efficient and accurate density-based prediction of macromolecular polarizabilities

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2022
Accepted
16 Dec 2022
First published
19 Dec 2022

Phys. Chem. Chem. Phys., 2023,25, 2131-2141

Efficient and accurate density-based prediction of macromolecular polarizabilities

D. Zhao, Y. Zhao, X. He, P. W. Ayers and S. Liu, Phys. Chem. Chem. Phys., 2023, 25, 2131 DOI: 10.1039/D2CP04690C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements