Investigation of a bacteriochlorin-containing pentad array for panchromatic light-harvesting and charge separation†
Abstract
A new pentad array designed to exhibit panchromatic absorption and charge separation has been synthesized and characterized. The array is composed of a triad panchromatic absorber (a bis(perylene-monoimide)-porphyrin) to which are appended an electron acceptor (perylene-diimide) and an electron donor/hole acceptor (bacteriochlorin) in a crossbar arrangement. The motivation for incorporation of the bacteriochlorin versus a free-base or zinc chlorin utilized in prior constructs was to facilitate hole transfer to this terminal unit and thereby achieve a higher yield of charge separation across the array. The intense S0 → S1 (Qy) band of the bacteriochlorin also enhances absorption in the near-infrared spectral region. Due to synthetic constraints, a phenylethyne linker was used to join the bacteriochlorin to the core porphyrin of the panchromatic triad rather than the diphenylethyne linker employed for the prior chlorin-containing pentads. Static and time-resolved photophysical studies reveal enhanced excited-state quenching for the pentad in benzonitrile and dimethyl sulfoxide compared to the prior chlorin-containing analogues. Success was only partial, however, as a long-lived charge separated state was not observed despite the improved energetics for the final ground-state hole/electron-shift reaction. The apparent reason is more facile competing charge-recombination due to the shorter bacteriochlorin – porphyrin linker that increases electronic coupling for this process. The studies highlight design criteria for balancing panchromatic absorption and long-lived charge separation in molecular architectures for solar-energy conversion.
- This article is part of the themed collection: 2023 PCCP HOT Articles