Issue 10, 2023

A two-dimensional tunable double Weyl fermion in BL-α borophene

Abstract

Two-dimensional (2D) materials with nontrivial band crossings, namely linear or double Weyl points, have been attracting tremendous attention. However, it remains a challenge to find existing 2D materials that host such nontrivial states. Here, based on first-principles calculations and symmetry analysis, we discover that the recently synthesized BL-α borophene is a metal with a tunable double Weyl point. Remarkably, both bands forming the double Weyl point have upward band bending. In addition, it shows an anisotropic band dispersion when away from the double Weyl point. To characterize its anisotropy, we define a quantity G, which could be changed from 1 to infinity when going from the energy of the double Weyl point to the Fermi level. Furthermore, the outer band of the double Weyl point is sensitive to biaxial strain, and could be changed from upward bending to downward bending. During this process, it has a critical case, in which the outer-band becomes flat. The changes in outer-band induce a variation in the density of states around the double Weyl point, thus giving rise to changes in its macroscopic physical properties. Applying a uniaxial strain enables the double Weyl point to transform into a pair of Weyl points by breaking the threefold rotation of BL-α borophene. When breaking the inversion symmetry and in-plane twofold rotation symmetry by a vertical symmetry, the double Weyl point still persisted; meanwhile, an additional pair of linear Weyl points appears on the high-symmetry path, giving rise to a Weyl complex case. Overall, our work thus provides an existing 2D material, BL-α borophene, to study the nontrivial band crossings in 2D.

Graphical abstract: A two-dimensional tunable double Weyl fermion in BL-α borophene

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2022
Accepted
08 Feb 2023
First published
13 Feb 2023

Phys. Chem. Chem. Phys., 2023,25, 7338-7343

A two-dimensional tunable double Weyl fermion in BL-α borophene

X. Wei, L. Jin, X. Zhang, Y. Liu, X. Dai and G. Liu, Phys. Chem. Chem. Phys., 2023, 25, 7338 DOI: 10.1039/D2CP05559G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements