Issue 18, 2023

The coherent motions of thermal active Brownian particles

Abstract

Active matter exhibits many intriguing non-equilibrium characteristics, for instance, without any attractive and aligned interactions, the active Brownian particle (ABP) system undergoing motility-induced phase separation forms a high-density phase with both structural ordering and dynamical coherence. Recently, the velocity correlation among the particles in this high-density phase was found in non-thermal overdamped ABP systems. However, it seemed to disappear if thermal noises were included, bringing some confusion about the generality of the consistency between structures and dynamics in ABPs. Here, we demonstrate that the thermal noises imposing a large random term on the instantaneous velocity of ABPs hinder the observation of the inherent correlation in the motions of ABPs. By averaging the instantaneous velocity (or equivalently, calculating the displacement), we show that the inherent motions of thermal-fluctuated ABPs are highly coherent. Whether there is thermal noise or not, the inherent collective motions of ABPs do exist, and the collective motion domains are consistent spatially with the ordered clusters of ABPs in the high-density phase. At the boundary of these ordered clusters, the active forces of the particles tend to point inward and compress to sustain these clusters, thus the particles in the clusters move coherently to form some vortex-like or aligned velocity domains.

Graphical abstract: The coherent motions of thermal active Brownian particles

Article information

Article type
Paper
Submitted
23 Dec 2022
Accepted
21 Apr 2023
First published
24 Apr 2023

Phys. Chem. Chem. Phys., 2023,25, 13027-13032

The coherent motions of thermal active Brownian particles

C. Yang, Y. Zeng, S. Xu and X. Zhou, Phys. Chem. Chem. Phys., 2023, 25, 13027 DOI: 10.1039/D2CP05984C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements