Research progress of two-dimensional antimonene in energy storage and conversion
Abstract
Since the first proposal of antimonene in 2015, extensive research attention has been drawn to its application in energy storage and conversion because of its excellent layered structure and fast ion diffusion properties. However, in contrast to the revolutionary expansion of antimonene-based energy devices, reviews on this topic that summarize and further guide the design of 2D antimonene for energy storage and conversion are rare. In this review, the structure, physicochemical properties, and popular synthesis approaches of antimonene are first summarised. Specifically, the rational design and application of antimonene in energy storage and conversion such as electrochemical batteries and supercapacitors, electrocatalytic hydrogen evolution reaction, electrocatalytic oxygen evolution reaction, electrocatalytic carbon dioxide reduction, photocatalytic reduction of organic pollution, photocatalytic reduction of carbon dioxide (CO2), solar cells and photovoltaic devices are outlined. Finally, opportunities and challenges are presented to further advance the development and application of antimonene in energy conversion and storage.
- This article is part of the themed collection: 2023 PCCP Reviews