Issue 25, 2023

Fluorescent nano-sized aggregates of halogen bonded complexes formed using perfluoropropyl iodides: a systematic comparison between two isomeric halogen bond acceptors, aniline and 4-methyl pyridine

Abstract

The halogen bonds (XB) formed by the two isomers 4-methyl pyridine (MePy) and aniline (ANL) with heptafluoro-1-propyl iodide (n-C3F7I) and heptafluoro-2-propyl iodide (iso-C3F7I) were investigated using vibrational (FT-IR and Raman) spectroscopy and quantum mechanical calculations. While these two isomers indicated a distinctive impact on the ring related vibrations, molecular electrostatic potential, frontier molecular orbitals, intermolecular electron density delocalisation and consequential charge transfer upon halogen bonding with n-C3F7I and iso-C3F7I, the dramatic intermolecular charge transfer (CT) occurring on the MePy involved XB systems demonstrated an ion-pair like aggregation. Such aggregation, after 72 h and longer after mixing, leads to an emission of fluorescence for both [MePy·C3F7I] systems. The resulting nano-sized aggregates were characterised using UV-Vis absorption and fluorescence spectroscopy along with scanning and transmittance electron microscopy (SEM and TEM), wherein, the XB complex with iso-C3F7I showed a faster and more severe aggregation due to a stronger CT than that with n-C3F7I. The present work is the first case of aggregation induced emission (AIE) due to aggregation of XB complexes formed by small neutral molecules.

Graphical abstract: Fluorescent nano-sized aggregates of halogen bonded complexes formed using perfluoropropyl iodides: a systematic comparison between two isomeric halogen bond acceptors, aniline and 4-methyl pyridine

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2023
Accepted
25 May 2023
First published
26 May 2023

Phys. Chem. Chem. Phys., 2023,25, 16938-16951

Fluorescent nano-sized aggregates of halogen bonded complexes formed using perfluoropropyl iodides: a systematic comparison between two isomeric halogen bond acceptors, aniline and 4-methyl pyridine

H. Fan, L. Nurtay, N. Daniyeva and E. Benassi, Phys. Chem. Chem. Phys., 2023, 25, 16938 DOI: 10.1039/D3CP01225E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements