Structural and thermodynamic properties of bulk triglycerides and triglyceride/water mixtures reproduced using a polarizable coarse-grained model†
Abstract
Triglycerides (TGs) play important roles in renewable energies, food production, medicine, and metabolism in organisms. Here, we developed a novel coarse-grained (CG) force field (FF) for triglycerides to reproduce both the structural and thermodynamic properties of bulk TGs, TG/air interfaces, and TG/water mixtures using molecular dynamics (MD) simulations. We rigorously optimized the bonded and nonbonded force parameters between the CG beads of TGs and nonbonded force parameters between TG beads and polarizable CG water beads by employing an efficient meta-multilinear interpolation parameterization algorithm recently developed by us. This CG FF performs very well in reproducing the percolating network of the TG bulk phase self-assembled in water and a variety of molecular conformations predicted by all-atom MD simulations. More importantly, it also correctly reproduces multiple experimentally measurable macroscopic thermodynamic properties, including the density and surface tensions of both the TG/air and TG/water interfaces. This paves the way for studying more complicated systems involving TGs on a large scale.