Issue 28, 2023

57Fe Mössbauer and DFT study of the electronic and spatial structures of the iron(ii) (pseudo)clathrochelates: the effect of ligand field strength

Abstract

Combined experimental 57Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe2+ ion, and, therefore, a decrease in the isomer shift (IS) value (so-called “semiclathrochelate effect”). Its macrobicyclization, giving the quasiaromatic cage complex, caused a further increase in the two former parameters and a decrease in IS (so-called “macrobicyclic effect”). The trend of their IS values was successfully predicted using the performed quantum-chemical calculations and the corresponding linear correlation with the electron density at their 57Fe nuclei was plotted. A variety of different functionals can be successfully used for such excellent prediction. The slope of this correlation was found to be unaffected by the used functional. In contrast, the predictions of both the sign and the values of quadrupole splitting (QS) for them, based on the theoretical calculations of EFG tensors, were found to be a real great challenge, which could not be solved at the moment even in the case of these C3-pseudosymmetric iron(II) complexes with known XRD structures. The latter experimental data allowed us to deduce a sign of the QSs for them. The straightforwarded molecular design of a (pseudo)encapsulating ligand is proposed to control both the spin state and the redox characteristics of an encapsulated metal ion.

Graphical abstract: 57Fe Mössbauer and DFT study of the electronic and spatial structures of the iron(ii) (pseudo)clathrochelates: the effect of ligand field strength

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2023
Accepted
19 Jun 2023
First published
19 Jun 2023

Phys. Chem. Chem. Phys., 2023,25, 18679-18690

57Fe Mössbauer and DFT study of the electronic and spatial structures of the iron(II) (pseudo)clathrochelates: the effect of ligand field strength

D. V. Balatskiy, A. S. Chuprin, S. V. Dudkin, L. F. Desdin-Garcia, A. L. Corcho-Valdes, M. Antuch, V. M. Buznik, S. Yu. Bratskaya and Y. Z. Voloshin, Phys. Chem. Chem. Phys., 2023, 25, 18679 DOI: 10.1039/D3CP01887C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements