Regulating excitonic effects in non-oxide based XPSe3 (X = Cd, Zn) monolayers towards enhanced photocatalysis for overall water splitting†
Abstract
The non-oxide 2D materials have garnered considerable interest due to their potential utilization as photocatalysts, which offer a superior substitute to metal-oxide-based photocatalysts. This study investigates the impact of the dielectric environment on the size and binding energy of excitons in atomically thin, experimentally synthesized semiconducting monolayers [XPSe3, X = (Cd, Zn)] to address the critical problem of electron–hole recombination, which significantly hinders the efficiency of most photocatalysts. We employ a precise non-hydrogenic model surpassing the hydrogenic-based Mott–Wannier model. Our findings are among the first few demonstrations of an increase in exciton size (and decrease in exciton binding energy) as environmental screening increases. These findings have implications for photocatalytic water splitting and are not limited to metal phosphorus trichalcogenides, but can be applied to other classes of 2D materials as well. This work also compares metal-oxide photocatalysts, which have been the focus of much research over the past five decades, to non-oxide-based metal phosphorus trichalcogenide photocatalysts, which offer a superior alternative due to their ability to address issues such as light-harvesting inability in the visible spectrum and unwanted charge recombination centres. Furthermore, the implications of this study extend beyond photocatalysts and are significant for the design and development of next-generation optoelectronic devices that incorporate excitonic processes, such as solar cells, photodetectors, LEDs, etc.