Issue 40, 2023

Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction

Abstract

Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.

Graphical abstract: Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction

Article information

Article type
Review Article
Submitted
24 May 2023
Accepted
19 Jul 2023
First published
07 Aug 2023
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2023,25, 26958-26971

Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction

A. Erbe, M. F. Tesch, O. Rüdiger, B. Kaiser, S. DeBeer and M. Rabe, Phys. Chem. Chem. Phys., 2023, 25, 26958 DOI: 10.1039/D3CP02384B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements