Stack bonding in polyaromatic hydrocarbons†
Abstract
Parallel displacement of π-stacked component molecules enhances the efficiency of organic semiconductors by maximizing interpenetration of the π-densities. Dimers of symmetric polyaromatic hydrocarbons coronene, hexabenzo[bc,de,gh,kl,no,qr]coronene, circumcoronene, kekulene, and circumcircumcoronene are examined using density functional theory from the stack bonding perspective which considers π-stacking interactions in terms of contributions of monomer π-orbital overlap to the character of dimer orbitals. Energetically favored parallel displaced and/or twisted dimer conformations are consistent with patterns of mixing of the monomer molecular orbitals (MOs) that maximize interpenetration of the π densities. The multiple minima found along parallel displacement (PD) coordinates coincide with the formation of dimer MOs formally antibonding between the monomers at the sandwich conformation to bonding at the PD minima. Minima identified with favorable stack bonding are consistent with polymorphs found in large polyaromatic hydrocarbons.