Electrochemical ammonia synthesis under ambient conditions using TM-embedded porphine-fused sheets as single-atom catalysts†‡
Abstract
In this research, we systematically investigated the reaction mechanism and electrocatalytic properties of transition metal anchored two-dimensional (2D) porphine-fused sheets (TM-Por) as novel single-atom catalysts (SACs) for the electrochemical nitrogen reduction reaction (eNRR) under ambient conditions. Using high-throughput screening and first-principles calculations based on the density functional theory (DFT) method, three eNRR catalyst candidates, i.e. Mo-Por, Tc-Por, and Nb-Por, were screened out, with the eNRR onset potentials on them being −0.36, −0.53, and −0.74 V, respectively. Furthermore, these catalyst candidates all have good stability and selectivity. Analyzing the band structures found that these catalyst candidates all are metallic, which is needed for good electrocatalysts. Ab initio molecular dynamics (AIMD) simulations show that these catalyst candidates have good stability at 500 K. It is hoped that our work will open up new possibilities for the experimental synthesis of electrochemical ammonia catalysts.