Electron delocalization in defect-containing graphene and its influence on tetrel bond formation†
Abstract
Using the advanced analyses of electron density and fermionic potential, we show how electron delocalization influences the ability of defect-containing graphene to form tetrel bonds. The Cg atoms of a vacancy defect can produce one nonpolar interaction, alongside a peculiar polar Cg⋯Cg bond. The latter stems from the presence of a localized electron pair on a vacancy defect Cg atom and the local depletion of electron localization on another Cg atom. This interaction is an example of intralayer tetrel bond. In the presence of an absorbed molecule of bisphenol A diglycidyl ether (DGEBA), graphene is able to form incipient tetrel Cg⋯O bonds with an ether group oxygen. In contrast to an epoxy group oxygen, the disposition of the ether oxygen often causes the orientation of electron-rich π-domains of graphene carbon on the weakly expressed electrophilic region of the oxygen. In the case of graphene with a point Si defect, the Si atom can form quite strong Si⋯C interactions with the DGEBA aryl carbons. In contrast to other noncovalent bonds, this interaction significantly alters the electron (de)localization on the Si atom and in the aryl ring. The reliability of the obtained results is enhanced by the use of multiple 2D periodic models with defects located at different positions along the DGEBA skeleton.
- This article is part of the themed collection: 2023 PCCP HOT Articles