Issue 35, 2023

Manipulating the thermometric behaviors of Er3+/Yb3+/Ho3+-tridoped La2Mo3O12 polychromatic upconverting microparticles via adjusting spatial mode and a sensing strategy

Abstract

To meet the needs of contactless optical thermometry, Er3+/Yb3+/Ho3+-tridoped La2Mo3O12 (LMO) microparticles were designed and synthesized. Upon exciting with 980 nm light, the synthesized compounds emit glaring upconversion (UC) emissions and their emission colors can be tuned from green to yellow by altering the Ho3+ content. It is found that the optimal doping contents for Yb3+ and Ho3+ in LMO are 9 and 1 mol%, respectively, and the UC emission mechanism involved is a two-photon harvest process. Using the fluorescence intensity ratio (FIR) technique to analyze the temperature responses of the UC emissions arising from thermally coupled levels (TCLs) and non-thermally coupled levels (non-TCLs), the temperature sensing abilities of the synthesized samples were investigated. When the TCLs of Er3+ (2H11/2, 4S3/2) are used, the synthesized microparticles present the highest absolute and relative sensitivities of 0.0085 and 1.0236% K−1, respectively. Moreover, when the non-TCLs of Er3+ (2H11/2) and Ho3+ (5F5) are used, the maximum absolute and relative sensitivities of the synthesized compounds are 0.0296 and 0.6287% K−1, respectively. Clearly, the thermometric characteristics of the final products can be regulated via using different sensing strategies (i.e., TCLs and non-TCLs) and emission combinations (i.e., spatial mode). However, the change of the Ho3+ content has little impact on the temperature sensing capacity of the synthesized products. These results indicate that Er3+/Yb3+/Ho3+-tridoped LMO microparticles are promising candidates for optical thermometers and our findings also provide possible strategies for regulating the thermometric properties of rare-earth ion doped luminescent materials.

Graphical abstract: Manipulating the thermometric behaviors of Er3+/Yb3+/Ho3+-tridoped La2Mo3O12 polychromatic upconverting microparticles via adjusting spatial mode and a sensing strategy

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2023
Accepted
15 Aug 2023
First published
16 Aug 2023

Phys. Chem. Chem. Phys., 2023,25, 23538-23547

Manipulating the thermometric behaviors of Er3+/Yb3+/Ho3+-tridoped La2Mo3O12 polychromatic upconverting microparticles via adjusting spatial mode and a sensing strategy

H. Lv, X. Lai, W. Li, L. Luo and P. Du, Phys. Chem. Chem. Phys., 2023, 25, 23538 DOI: 10.1039/D3CP03261B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements