Active control of circular dichroism in a graphene–metal hybridized metamaterial driven by symmetry-protected bound states in the continuum
Abstract
Active control of chirality in plasmonic metamaterials is of great importance due to their potential for diverse applications in imaging, communication and spectroscopy. Recently, inspired by the concept of bound states in the continuum (BIC), strong chiroptical responses are constructed in metamaterials by introducing structural asymmetries. However, most of these chiral metamaterials are static and cannot be modulated. Herein, we theoretically demonstrate a novel approach for manipulating chiroptical responses with enhanced circular dichroism (CD) and large modulation depths in a graphene–metal hybridized metamaterial. By introducing a structured graphene and adjusting the Fermi energy (EF), the conversion between BIC and quasi-BIC states is achieved successfully. The proposed device demonstrates a tuneable CD in the range of 0.693–0.008 when EF is adjusted from 0.01 eV to 1.0 eV, which can be further improved by optimizing its geometry. The proposed graphene–metal hybridized metamaterial paves a new way for manipulating polarization states at terahertz frequencies and is of great potential for practical applications such as dynamic display and optoelectronic modulation.