The intrinsically low lattice thermal conductivity of monolayer T-Au6X2 (X = S, Se and Te)†
Abstract
Thermal conductivity (κ, which consists of electronic thermal conductivity κe and lattice thermal conductivity κl), as an essential parameter in thermal management applications, is a critical physical quantity to measure the heat transfer performance of materials. To seek low-κ materials for heat-related applications, such as thermoelectric materials and thermal barrier coatings. In this study, based on a complex cluster design, we report a new class of two-dimensional (2D) transition metal dichalcogenides (TMDs): T-Au6X2 (X = S, Se, and Te) with record ultralow κl values. At room temperature, the κl values of T-Au6S2, T-Au6Se2, and T-Au6Te2 are 0.25 (0.23), 0.30 (0.21), and 0.12 (0.10) W m−1 K−1 along the x-axis (y-axis) direction, respectively, exhibiting good thermal insulation. The ultralow κl originates from strong phonon softening and suppression, especially for the phonon with frequency 0–1 THz. In addition, T-Au6Te2 holds the lowest group velocity and phonon relaxation time among the three T-Au6X2 monolayers. Our study provides an alternative approach for achieving ultralow κl through complex cluster replacement. Meanwhile, this new class of TMDs is expected to shine in thermal insulation and thermoelectricity due to their ultralow κl values.