Issue 42, 2023

Gold(iii) derivatives as the noncovalent interaction donors: theoretical study of the π-hole regium bonds

Abstract

Except for the well-known σ-hole regium bonds formed by metal nanoparticles and M(I) (M = Cu, Ag, and Au) derivatives, the existence of π-hole regions located above and below the Au atom in gold(III) derivatives suggests that gold(III) also functions as an efficient electrophilic site. In this study, a comprehensive analysis was conducted on the electrophilicity of trichloro-(p-toluonitrilo-N)-gold(III) derivatives AuL3(NCC6H4X) (L = Cl, Br, CN; X = NH2, CH3, CF3, NC, and CN) and the nature of π-hole regium bonds in the AuL3(NCC6H4X)⋯LB (LB = NH3, N(NH3)3, CH2O, C2H2, C2H4, C6H6) and (AuCl3(NCC6H4Y))n (Y = Cl, CN, NC, NO2; n = 2, 3)) complexes. The characteristics of the π-hole regium bonds were studied with respect to the influence of ligands and substituents, the strength of intermolecular interactions between Au(III) derivatives and Lewis bases, and those in the polymers. In the case of the AuL3(NCC6H4X)⋯NH3 complexes, the strength of the regium bonds increases gradually in the order of L = Cl < Br < CN and X = NH2 < CH3 < CF3 ≈ NC < CN. The ligands (L) attached to the Au atom exert a significant effect on the strength of the π-hole regium bonds in comparison to the substituents (X) on the benzene ring. The regium bonds are primarily dominated by electrostatic interaction, accompanied by moderate contribution from polarization. Linear relationships were identified between the electrostatic energies and the local most positive potentials over the Au atom, as well as between the polarization energies and the amount of charge transfer. Most of the π-hole regium bonds in the AuL3(NCC6H4X)⋯LB complexes exhibit the characters of closed shell noncovalent interactions. In the polymers (AuCl3(NCC6H4Y))n, weak face-to-face π–π stacking interactions are also present, in addition to regium bonds. The trimers displayed a slightly negative cooperativity in comparison to the dimers.

Graphical abstract: Gold(iii) derivatives as the noncovalent interaction donors: theoretical study of the π-hole regium bonds

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2023
Accepted
10 Oct 2023
First published
12 Oct 2023

Phys. Chem. Chem. Phys., 2023,25, 29155-29164

Gold(III) derivatives as the noncovalent interaction donors: theoretical study of the π-hole regium bonds

J. Yan, Y. Zeng, L. Meng, X. Li and X. Zhang, Phys. Chem. Chem. Phys., 2023, 25, 29155 DOI: 10.1039/D3CP04354A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements