Thermal and electrical transport properties of two-dimensional Dirac graphenylene: a first-principles study†
Abstract
The development of high performance two-dimensional thermoelectric (TE) materials is crucial for enhancing the conversion of waste heat into electricity and for achieving the transition to new energy. In recent years, two-dimensional Dirac materials with high carrier mobility and non-trivial topological properties have been expected to extend the application of carbon-based materials in the TE field. However, research on the TE properties of two-dimensional Dirac materials is still scarce, and the relevant physical mechanisms that affect the TE figure of merit of the materials are still unclear. Therefore, we carefully selected a typical and experimentally synthesized Dirac structure, graphenylene, and systematically studied its thermal transport and electrical transport properties using density functional theory (DFT) and Boltzmann transport theory. The results show that the ZT value of graphenylene exhibits an extremely significant anisotropy. There is a significant discrepancy in the figure of merit (ZT) values of n-type and p-type systems at the optimum doping concentration, i.e., the ZT value of the n-type system (0.49) is one order of magnitude greater than that of the p-type system (0.06). Graphenylene exhibits excellent electronic performance due to its unique electronic band structure and has an extremely high conductivity (for the n-type system, electrical conductivity at room temperature is 109 S m−1). Interestingly, graphenylene has an unusually higher ZT at low temperature (0.5 at 300 K) than at high temperature (0.3 at 800 K) for n-type doping along the x-axis, contrary to the conventional view that higher ZT values exist in the high temperature range. This work provides a deep insight into the TE properties of two-dimensional Dirac carbon materials and offers new perspectives for enhancing the TE performance and application of carbon-based nanomaterials.