Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[n]uril homologues and derivatives
Abstract
Cucurbit[n]uril supramolecular chemistry has developed rapidly since 2001 when different cucurbit[n]uril homologues (Q[n]) were successfully separated in pure form. The combination of Q[n] cavity size and various types of external stimuli has given birth to numerous types of Q[n]-based mechanically interlocked molecules (MIMs), including (pseudo)rotaxanes, catenanes, dendrimers and poly(pseudo)rotaxanes. In this review article, the important advances in the field of Q[n]-based MIMs over the past two decades are highlighted. This review also describes examples of heterowheel (pseudo)rotaxanes and poly(pseudo)rotaxanes involving Q[n]s, and reflects on the opportunities and challenges of constructing Q[n]-based stimuli-responsive MIMs.