Tools for overcoming reliance on energy-based measures in chemistry: a tutorial review†
Abstract
The vast majority of literature in the chemical sciences describes fundamental chemical and physical phenomena using scalar measures, such as the energy, even though many phenomena are beyond the scope of scalar-based considerations. This problem exists no matter how accurately the associated energies are calculated. The solution that is explained in this work is to remove the reliance on scalar quantum chemical measures and instead utilize the vector-based and full symmetry-breaking nature of next generation quantum theory of atoms in molecules (NG-QTAIM). The connection with experiment on neutral chiral molecules is explained. A selection of non-energy-based explanations are provided: the functioning of molecular devices, why the cis-effect is the exception rather than the rule, stereochemical phenomena including chiral discrimination, quantifying chiral character of formally achiral molecules, mixed S and R stereoisomer character and the effect of an applied electric field. Current and future developments along with suggestions for future avenues of investigation are discussed. This tutorial review provides the practical details required to implement NG-QTAIM for a range of phenomena that are not accessible with energy-based measures. Step-by-step worked examples are included with data sets and instructions for use of commercial and open-source software along with examples of how to interpret the results.