Issue 19, 2023

Tuning of the electronic, photocatalytic and optical properties of Janus XWAZ2 (X = S, Se, Te; A = Si, Ge; Z = N, P, As) monolayers via strain and external electric field

Abstract

Owing to their unique structure and properties, two-dimensional Janus materials have garnered significant attention in the field of photocatalytic water decomposition. In this study, we have conducted a comprehensive investigation of the stability, photocatalytic, and optical properties of monolayer 2D Janus XWAZ2 (X = S, Se, Te; A = Si, Ge; Z = N, P, As) using first-principles calculations. Our findings reveal that the inherent dipole of Janus XWAZ2 induces noticeable band bending, resulting in favorable band edge positions and making it an effective photocatalyst. The internal electric field in the structure efficiently separates electrons and holes on different surfaces, effectively suppressing recombination and ensuring high photocatalytic activity. In addition, we explored the modulation of the band gap of the XWAZ2 (X = S, Se, Te; A = Si, Ge; Z = N, P, As) monolayer through biaxial strain and applied an external electric field, further tuning its photocatalytic and optical properties. This study provides valuable insights into the photocatalytic water-splitting of Janus structures and paves the way for future research in this field.

Graphical abstract: Tuning of the electronic, photocatalytic and optical properties of Janus XWAZ2 (X = S, Se, Te; A = Si, Ge; Z = N, P, As) monolayers via strain and external electric field

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2023
Accepted
23 Aug 2023
First published
06 Sep 2023

Catal. Sci. Technol., 2023,13, 5718-5733

Tuning of the electronic, photocatalytic and optical properties of Janus XWAZ2 (X = S, Se, Te; A = Si, Ge; Z = N, P, As) monolayers via strain and external electric field

Z. Gao, X. He, Y. He and K. Xiong, Catal. Sci. Technol., 2023, 13, 5718 DOI: 10.1039/D3CY00901G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements