Cu nanoparticles confined in siliceous MFI zeolite for methanol steam reforming†
Abstract
The methanol steam reforming (MSR) reaction is a sustainable process for producing hydrogen using solar energy. However, Cu-based catalysts often suffer from sintering issues. In this study, we prepared Cu nanoparticles confined in the siliceous MFI-type silicate-1 using a ligand-stabilized strategy, referred to as Cu@S-1. Compared with the Cu/S-1 catalyst prepared through conventional impregnation, the Cu@S-1 catalyst displayed highly active and stable performance in the MSR reaction. The 1.0 Cu@S-1 catalyst achieved a methanol conversion of 72% and a CO selectivity of 0.2% at 300 °C. Comprehensive characterization studies revealed that the 1.0 Cu@S-1 catalyst exhibited an enhanced dispersion of Cu species and a higher Cu+ ratio due to the enhanced interaction between Cu species and the zeolite framework.