Issue 4, 2023

A scientific machine learning framework to understand flash graphene synthesis

Abstract

Flash Joule heating (FJH) is a far-from-equilibrium (FFE) processing method for converting low-value carbon-based materials to flash graphene (FG). Despite its promises in scalability and performance, attempts to explore the reaction mechanism have been limited due to the complexities involved in the FFE process. Data-driven machine learning (ML) models effectively account for the complexities, but the model training requires a considerable amount of experimental data. To tackle this challenge, we constructed a scientific ML (SML) framework trained by using both direct processing variables and indirect, physics-informed variables to predict the FG yield. The indirect variables include current-derived features (final current, maximum current, and charge density) predicted from the proxy ML models and reaction temperatures simulated from multi-physics modeling. With the combined indirect features, the final ML model achieves an average R2 score of 0.81 ± 0.05 and an average RMSE of 12.1% ± 2.0% in predicting the FG yield, which is significantly higher than the model trained without them (R2 of 0.73 ± 0.05 and an RMSE of 14.3% ± 2.0%). Feature importance analysis validates the key roles of these indirect features in determining the reaction outcome. These results illustrate the promise of this SML to elucidate FFE material synthesis outcomes, thus paving a new avenue to processing other datasets from the materials systems involving the same or different FFE processes.

Graphical abstract: A scientific machine learning framework to understand flash graphene synthesis

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Apr 2023
Accepted
18 Jul 2023
First published
18 Jul 2023
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2023,2, 1209-1218

A scientific machine learning framework to understand flash graphene synthesis

K. Sattari, L. Eddy, J. L. Beckham, K. M. Wyss, R. Byfield, L. Qian, J. M. Tour and J. Lin, Digital Discovery, 2023, 2, 1209 DOI: 10.1039/D3DD00055A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements