Investigation of multicolor emitting Cs3GdGe3O9:Bi3+,Eu3+ phosphors via energy transfer for WLEDs†
Abstract
Bi3+/Eu3+ doped Cs3GdGe3O9 luminescent materials were prepared by a solid-state reaction. The energy band and density of states of Cs3GdGe3O9 were calculated by density functional theory. The Cs3GdGe3O9 host presents a broadband emission peaking at 520 nm. Systemic measurement and analysis of luminescence properties were performed to confirm the energy transfer in Cs3GdGe3O9:Bi3+,Eu3+. The multicolor modulated emission from blue (0.1678, 0.1568) to red (0.5931, 0.3251) can be achieved by varying the doping ratio of bismuth to europium. A white light-emitting diode (WLED) was produced by combining the Cs3GdGe3O9:0.05Bi3+,0.1Eu3+ phosphor, a commercial green phosphor, and a 310 nm ultraviolet chip. The color rendering index of the WLED driven by 20 mA bias current is 89.6 with the CIE coordinates of (0.3520, 0.3626). The results reveal that the Cs3GdGe3O9:Bi3+,Eu3+ phosphor is a potential material that can be used in multicolor tunable luminescence and WLEDs.