Issue 18, 2023

Surfactant effects on electrochemically durable lead halide perovskite electro-catalysts

Abstract

Electrochemically durable perovskite electrodes of nickel foam/TiO2/FA(Pb1−xGex)I3, passivated using various surfactants of tetra-n-alkyl ammonium halides (alkyl = ethyl, butyl, hexyl, or octyl; halide = I, I0.5Br0.5, Br, Br0.5Cl0.5, or Cl), were successfully applied as good electro-catalysts on the counter electrodes in dye-sensitized solar cells (DSSCs). The longer alkyl chain of a surfactant resulted in a higher water contact angle, but poorer film conductivity. Based on the optimal tetra-n-hexyl ammonium (THA) cation, shrinking the halide radius of THA from I to I0.5Br0.5 formed an appropriate amount of FAPbBr3 nano-crystals covering on the FA(Pb1−xGex)I3 grain surface. This phenomenon not only suppressed the perovskite decomposition under electrochemical measurements, but also created additional electro-catalytic active sites for triggering the iodide/triiodide redox reaction. Further shrinking the halide radius of THA from I0.5Br0.5 to Cl resulted in a severe self-aggregation of THACl, leading to an insufficient passivation and thereby poor electrochemical performance. In an ambient environment with a relative humidity higher than 75%, the optimal perovskite electrode of nickel foam/TiO2/FA(Pb1−xGex)I3-THAI0.5Br0.5 maintained the good crystallinity of α-FAPbI3 at least for 6 months, without obvious decomposition. Compared to the DSSC couple with a common counter electrode of nickel foam/Pt (8.74%), a better cell performance of 8.87% was achieved using the counter electrode of nickel foam/TiO2/FA(Pb1−xGex)I3-THAI0.5Br0.5, which was attributed to its good intrinsic electro-catalytic activity, large surface area, multiple active sites, and decent thermodynamic stability. Under room light illumination, higher cell efficiencies were obtained at 1 klux (21.5% for an office), 3 klux (22.9% for a shopping window), and 6 klux (22.3% for a lampshade). There is no doubt that air-stable perovskites have great potential in showing high performance for various electrochemical devices.

Graphical abstract: Surfactant effects on electrochemically durable lead halide perovskite electro-catalysts

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2022
Accepted
26 Mar 2023
First published
27 Mar 2023

Dalton Trans., 2023,52, 5956-5968

Surfactant effects on electrochemically durable lead halide perovskite electro-catalysts

R. Zhong, K. Tsao, C. Cheng, C. Liu and C. Li, Dalton Trans., 2023, 52, 5956 DOI: 10.1039/D2DT03868D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements