Enhancement of photoelectrocatalytic performance of copper cobaltate nanoflowers modified with 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin for methanol oxidation under light†
Abstract
With the continuously increasing global energy demand, there is an urgent requirement to find efficient methanol oxidation reaction (MOR) catalysts that can replace precious metals. In this work, we have elaborately integrated 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) with copper cobaltate (CuCo2O4), which possesses efficient separation of photogenerated charges and increased active sites. The mass activity of H2TCPP/CuCo2O4 (534.75 mA mg−1) toward MOR is higher than that of pure CuCo2O4 (291.75 mA mg−1) under light. In addition, H2TCPP/CuCo2O4 can catalyze the oxidation of other alcohols, such as ethanol, ethanediol, isopropanol, and glycerol. This study demonstrates that it is feasible to enhance the MOR activity by the modification of bimetallic transition metal oxides with porphyrins.