Issue 19, 2023

A phosphorylated zinc finger peptide bearing a gadolinium complex for zinc detection by MRI

Abstract

Two zinc finger peptides, namely ZFQDLn and ZFQELn (Ln = Tb or Gd), with an appended Ln3+ chelate and a phosphoserine able to coordinate the Ln3+ ion are presented. The two peptides differ by the amino acid anchorage of the chelate, either aspartate (D) or glutamate (E). Both peptides are able to bind Zn2+ and adopt the ββα fold. Interestingly, ZFQETb shows a decrease in sensitized Tb3+ luminescence upon Zn2+ binding whereas ZFQDTb does not. The luminescence change upon Zn2+ binding is attributed to a change in hydration number (q) of the Tb3+ ion due to the decoordination of the phosphoserine from the Ln3+ ion upon Zn2+ binding and peptide folding. This process is highly sensitive to the length of the linker between the Ln chelate and the peptidic backbone. The magnetic properties of the gadolinium analogue ZFQEGd were studied. An impressive relaxivity increase of 140% is observed at 60 MHz and 25 °C upon Zn2+ binding. These changes can be attributed to a combined increase effect of the hydration number of Gd3+ and of the rigidity of the system upon Zn2+ binding. Phantom MR images at 9.4 T show a clear signal enhancement in the presence of Zn2+. These zinc finger peptides offer a unique platform to design such Zn-responsive probes.

Graphical abstract: A phosphorylated zinc finger peptide bearing a gadolinium complex for zinc detection by MRI

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2023
Accepted
31 Mar 2023
First published
03 Apr 2023

Dalton Trans., 2023,52, 6260-6266

A phosphorylated zinc finger peptide bearing a gadolinium complex for zinc detection by MRI

K. P. Malikidogo, A. Pallier, F. Szeremeta, C. S. Bonnet and O. Sénèque, Dalton Trans., 2023, 52, 6260 DOI: 10.1039/D3DT00728F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements