Highly efficient conversion of CO2 into N-formamides catalyzed by a noble-metal-free aluminum-based MOF under mild conditions†
Abstract
Formamides have critical application value in the chemical industry serving as solvents or reagents for the synthesis of pharmaceuticals, agrochemicals, and dyes. Herein, we selected a green-synthesis produced aluminum-based metal–organic framework (Al-MOF) material CAU-10pydc as a catalyst to study its performance in CO2 formylation reaction. At room temperature and in the green solvent acetonitrile, CAU-10pydc could highly effectively catalyze the reaction of CO2 and N-methylaniline to N-methyl-N-phenylformamide under mild conditions. CAU-10pydc could maintain its efficient catalytic performance after five catalytic cycles, and PXRD and SEM measurements demonstrated that CAU-10pydc is stable after cyclic catalysis. The universality of this catalyst was illustrated by nine substrates with high yields. The reaction mechanism was further analyzed by DFT calculations. To our knowledge, this work is the first example of a CO2 formylation reaction being catalyzed highly effectively by an Al-MOF under green conditions.