A fluorescent controllable supramolecular crosslinked polymer constructed by complementary metal coordination interaction†
Abstract
In this work, two different monomers M1 and M2 were designed and synthesized. M1 + M2 + Zn(OTf)2 could self-assemble to form a supramolecular crosslinked polymer (SCP) based on complementary terpyridine-based metal coordination interaction. The self-assembly of M1 + M2 + Zn(OTf)2 was studied by various techniques, such as 1H NMR, 2D COSY NMR, 2D NOESY NMR, UV-Vis analysis, fluorescence analysis, viscosity measurement, and TEM. The experimental result indicated that the molecular weight of the SCP depended on the initial monomer concentration. The SCP could further turn into supramolecular polymer gel at high concentrations, and the reversible gel–sol transformation could be realized by heating/cooling. Moreover, the fluorescence quenching/enhancement of the SCP could be adjusted by adding base/acid.