Issue 43, 2023

A comparison of the coordination behaviour of R2PCH2BMe2 (R = Me vs. Ph) ambiphilic ligands with late transition metals

Abstract

A new synthesis that avoids the use of Me2PH is reported for (Me2PCH2BMe2)2, and this method was extended to the synthesis of (Ph2PCH2BMe2)2. The ligand precursor (Me2PCH2BMe2)2 did not react with [{M(μ-Cl)(cod)}2] (cod = 1,5-cyclooctadiene; M = Ir and Rh) or [PtCl2(cod)] at room temperature. However, after 12–48 hours at 65–70 °C, these reactions afforded (a) [Ir(cod)(μ-Cl)(Me2PCH2BMe2)] (1), (b) an equilibrium mixture of (Me2PCH2BMe2)2, [{Rh(μ-Cl)(cod)}2] and [Rh(cod)(μ-Cl)(Me2PCH2BMe2)] (2), and (c) cis-[Pt(μ-Cl)2(Me2PCH2BMe2)2] (3), respectively. By contrast, reactions between the phenyl-substituted analogue, (Ph2PCH2BMe2)2, and [{M(μ-Cl)(cod)}2] (cod = 1,5-cyclooctadiene; M = Ir and Rh) proceeded over the course of 1 hour at 20 °C to generate [M(cod)(μ-Cl)(Ph2PCH2BMe2)] (M = Ir (4) and Rh (5)), indicative of room temperature (Ph2PCH2BMe2)2 dissociation. Room temperature reactions of (Ph2PCH2BMe2)2 with [{Rh(μ-Cl)(coe)2}2] (coe = cyclooctene) using a 1 : 1 or 3 : 1 stoichiometry also afforded [{Rh(coe)(μ-Cl)(Ph2PCH2BMe2)}2] (6) or [RhCl(Ph2PCH2BMe2)3] (7), respectively, where the latter is a borane-appended analogue of Wilkinson's catalyst, and reactions of (Ph2PCH2BMe2)2 with [PtX2(cod)] (X = Cl or Me) yielded cis-[Pt(μ-Cl)2(Ph2PCH2BMe2)2] (8) and cis-[PtMe2(Ph2PCH2BMe2)2] (9). Compounds 1–9, (Me2PCH2BMe2)2 and (Ph2PCH2BMe2)2 were crystallographically characterized. In compounds 1–5 and 8, each chloride co-ligand is coordinated by the borane of an R2PCH2BMe2 ligand. Additionally, in the solid state structure of 6, each bridging chloride ligand interacts weakly with a pendent borane, and in 7, the chloride ligand is tightly coordinated to the borane of one Ph2PCH2BMe2 ligand and weakly coordinated to the borane of a second Ph2PCH2BMe2 ligand. By contrast, both boranes in 9 (and one of the three boranes in 7) are non-coordinated.

Graphical abstract: A comparison of the coordination behaviour of R2PCH2BMe2 (R = Me vs. Ph) ambiphilic ligands with late transition metals

Supplementary files

Article information

Article type
Paper
Submitted
05 Aug 2023
Accepted
02 Oct 2023
First published
10 Oct 2023

Dalton Trans., 2023,52, 15712-15724

A comparison of the coordination behaviour of R2PCH2BMe2 (R = Me vs. Ph) ambiphilic ligands with late transition metals

K. M. Paskaruk, D. J. H. Emslie and J. F. Britten, Dalton Trans., 2023, 52, 15712 DOI: 10.1039/D3DT02538A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements