Issue 43, 2023

Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(ii)–CNC pincer complexes

Abstract

An unexpected reversal in catalytic activity for acceptorless dehydrogenative coupling compared to acceptorless alcohol dehydrogenation has been observed using a series of cationic Ru(II)–CNC pincer complexes with different ancillary ligands. In continuation of our study of cationic Ru(II)–CNC pincer complexes 1a–6a, new complexes with bulky N-wingtips [Ru(CNCiPr)(CO)(PPh3)Br]PF6 (1b), [Ru(CNCCy)(CO)(PPh3)Cl]PF6 (1c), [Ru(CNCCy)(CO)(PPh3)H]PF6 (2c), [Ru(CNCiPr)(PPh3)2Cl]PF6 (3b), [Ru(CNCCy)(PPh3)2Cl]PF6 (3c), [Ru(CNCiPr)(PPh3)2H]PF6 (4b), [Ru(CNCCy)(PPh3)2H]PF6 (4c), [Ru(CNCiPr)(DMSO)2Cl]PF6 (6b), and [Ru(CNCCy)(DMSO)2Cl]PF6 (6c) [CNCR = 2,6-bis(1-alkylimidazol-2-ylidene)-pyridine] have been synthesized and the catalytic activities of the new complexes have been compared with their N-methyl analogues for transfer hydrogenation of cyclohexanone and acceptorless dehydrogenation of benzyl alcohol. Furthermore, all complexes have been utilized as catalysts in the dehydrogenative coupling reaction of benzyl alcohol with amines. While the catalytic activities of the new complexes for transfer hydrogenation and acceptorless alcohol dehydrogenation were found to be in line with the previously observed trend based on the ancillary ligands (CO > COD > DMSO > PPh3), for the acceptorless dehydrogenative coupling reaction, complexes containing PPh3 and DMSO ligands performed better compared to complexes containing CO and COD ligands. Based on NMR and mass investigation of catalytic reactions, a plausible mechanism has been suggested to explain the difference in catalytic activity and its reversal during the dehydrogenative coupling reaction. Furthermore, the substrate scope for the dehydrogenative coupling reaction of benzyl alcohol with a wide range of amines has been explored, including synthesizing some pharmaceutically important imines. All new complexes have been characterized by various spectroscopic techniques, and the structures of 4b and 6b have been confirmed by the single-crystal X-ray diffraction technique.

Graphical abstract: Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(ii)–CNC pincer complexes

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2023
Accepted
03 Oct 2023
First published
04 Oct 2023

Dalton Trans., 2023,52, 15878-15895

Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(II)–CNC pincer complexes

R. K. Singh, D. Yadav, S. Misra and A. K. Singh, Dalton Trans., 2023, 52, 15878 DOI: 10.1039/D3DT03149G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements