Issue 45, 2023

Enhancing the zircon yield through the addition of calcium phosphates into ZrO2–SiO2 binary systems: synthesis and structural, morphological, mechanical and in vitro analysis

Abstract

The crystallization of ZrSiO4 is generally accomplished by the addition of mineralizers into ZrO2–SiO2 binary oxides. The current investigation aimed to investigate the effect of adding calcium phosphates into ZrO2–SiO2 binary oxides on the yield of ZrSiO4. The concentration of calcium phosphate additions were varied to obtain ZrSiO4 that fetches improved mechanical and biological properties for application in hard tissue replacements. The findings highlight the significant role of Ca2+ and P5+ in triggering the ZrSiO4 formation via their accommodation at the Zr4+ and Si4+ sites. Especially, calcium phosphate additions trigger the t- → m-ZrO2 transition beyond 1000 °C, which consequently reacts with SiO2 to promote ZrSiO4 formation. Calcium phosphates are accommodated at the lattice sites of ZrSiO4 with a maximum limit of 20 mol%, beyond which the crystallization of β-Ca3(PO4)2 is noticed. The optimum amount of 20 mol% of calcium phosphates displayed a better strength than that of all the investigated specimens. More than 80% of cell viability in MG-63 cells was invariably determined in all the calcium phosphate-added ZrSiO4 systems.

Graphical abstract: Enhancing the zircon yield through the addition of calcium phosphates into ZrO2–SiO2 binary systems: synthesis and structural, morphological, mechanical and in vitro analysis

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2023
Accepted
10 Oct 2023
First published
26 Oct 2023

Dalton Trans., 2023,52, 16698-16711

Enhancing the zircon yield through the addition of calcium phosphates into ZrO2–SiO2 binary systems: synthesis and structural, morphological, mechanical and in vitro analysis

E. Manivannan, P. Govindharaj, S. Gupta, A. Dhayalan and S. Kannan, Dalton Trans., 2023, 52, 16698 DOI: 10.1039/D3DT03179A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements