Issue 10, 2023

OH and Cl radicals initiated oxidation of amyl acetate under atmospheric conditions: kinetics, products and mechanisms

Abstract

The relative rate coefficients of the gas-phase reaction of amyl acetate, (AA), CH3COO(CH2)4CH3 with OH radicals and Cl atoms were determined at (298 ± 2) K and 1000 mbar of pressure. The experiments were developed in two different atmospheric Pyrex chambers coupled with “in situ” Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography equipped with flame ionization detection (GC-FID). The rate coefficients obtained from the average of different experiments were (in units of cm3 molecule−1 s−1): kAA+OH-FTIR = (6.00 ± 0.96) × 10−12; kAA+OH-GC-FID = (6.37 ± 1.50) × 10−12 and kAA+Cl-GC-FID = (1.35 ± 0.14) × 10−10. Additionally, product studies were completed for the Cl-initiated oxidation of AA, in similar conditions of the kinetic experiments by Gas Chromatography coupled with a mass detector (GC-MS) with Solid Phase Micro Extraction (SPME). Acetic acid, formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde were the main products identified. Complementary Structure Activity Relationships (SAR) were developed to compare with the experimental kinetic results and to clarify the individual reactivity sites of the ester. The atmospheric oxidation pathways of the AA are postulated and discussed taking into account the observed products and the SAR estimations. The initial pathway for the degradation of AA initiated by Cl atoms and OH radicals occurs via H-atom abstraction at –C(O)OCH2– (C1); –CH2– (C2); –CH2– (C3); and –CH2CH3– (C4) moieties. The atmospheric implications of the reactions studied were evaluated by the estimation of their tropospheric lifetimes toward OH radicals and Cl atoms to be: τOH = 22 and τCl = 62 hours. Consequently, the estimated average ozone production ([O3] = 2.15) suggests a potential contribution of these compounds emission to the formation of photochemical smog. On the other hand, the Photochemical Ozone Creation Potential (POCP) for AA was calculated to be POCP = 70.2. A moderate risk of photochemical smog production suggests that this ester could be harmful to the health and the biota in urban environments.

Graphical abstract: OH and Cl radicals initiated oxidation of amyl acetate under atmospheric conditions: kinetics, products and mechanisms

Article information

Article type
Paper
Submitted
06 Jun 2023
Accepted
17 Aug 2023
First published
17 Aug 2023
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2023,3, 1485-1496

OH and Cl radicals initiated oxidation of amyl acetate under atmospheric conditions: kinetics, products and mechanisms

V. G. Straccia C., M. B. Blanco and M. A. Teruel, Environ. Sci.: Atmos., 2023, 3, 1485 DOI: 10.1039/D3EA00082F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements