Issue 9, 2023

The driving effects of common atmospheric molecules for formation of clusters: the case of sulfuric acid, formic acid, hydrochloric acid, ammonia, and dimethylamine

Abstract

One of the main sources of uncertainty for understanding global warming is understanding the formation of larger secondary aerosols. The beginning stages start with the formation of prenucleation complexes from precursor monomers of acids, bases, and organic molecules. The detailed interactions responsible for prenucleation and subsequent aerosol formation are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a hydrochloric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0–3 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. This first detailed study of HCl interacting with two other acids and two bases reveals the subtleties that exist in the formation of prenucleation complexes for this system. We find that nitric acid forms stronger interactions in dry clusters than hydrochloric acid does. Often as the clusters grow larger with hydration, the sequential energies of clusters containing hydrochloric acid become more favorable than those with nitric acid. The detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength, which makes a priori prediction of which atmospheric species will be most important for driving prenucleation growth quite difficult. The results presented in this paper add to the conclusions that hydrogen bond topology and the detailed structural interactions that are subtle interplays between enthalpy and entropy are as important as conventional ideas such as acid/base strength.

Graphical abstract: The driving effects of common atmospheric molecules for formation of clusters: the case of sulfuric acid, formic acid, hydrochloric acid, ammonia, and dimethylamine

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
13 Jun 2023
Accepted
28 Jul 2023
First published
31 Jul 2023
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2023,3, 1335-1351

The driving effects of common atmospheric molecules for formation of clusters: the case of sulfuric acid, formic acid, hydrochloric acid, ammonia, and dimethylamine

O. M. Longsworth, C. J. Bready and G. C. Shields, Environ. Sci.: Atmos., 2023, 3, 1335 DOI: 10.1039/D3EA00087G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements