Issue 8, 2023

Covalent triazine frameworks for advanced energy storage: challenges and new opportunities

Abstract

In comparison to inorganic electrode materials utilised in energy storage systems, organic electrode materials possess several advantages, including a lightweight nature, customisable structure, high specific capacity, wide availability of natural resources, and recyclability. However, the low ionic conductivity and susceptibility to degradation over time result in inferior performance and a shorter lifespan when compared to inorganic electrode materials. Recently, covalent triazine frameworks (CTFs) have emerged as a promising strategy for the development of organic electrodes. CTFs are a type of covalent organic framework that exhibit customisable porosity, modifiable structures, and versatile functionality. They are characterised by a rigid triazine (C3N3) linking unit, which affords excellent thermal and chemical stability, enabling them to resist structural deformation upon cycling. CTFs have garnered considerable attention for their potential to store and transport charges in various electrochemical energy storage devices over the past few years. This review provides a comprehensive overview of the working principle and synthesis methods of CTFs, highlighting the significant advances in supercapacitors and various rechargeable battery systems. Additionally, this review introduces different design strategies and potential impacts on improving electrochemical performance. Finally, this review concludes by highlighting the opportunities for future research in this rapidly advancing field.

Graphical abstract: Covalent triazine frameworks for advanced energy storage: challenges and new opportunities

Article information

Article type
Review Article
Submitted
01 May 2023
Accepted
03 Jul 2023
First published
04 Jul 2023

Energy Environ. Sci., 2023,16, 3181-3213

Covalent triazine frameworks for advanced energy storage: challenges and new opportunities

P. Xiong, S. Zhang, R. Wang, L. Zhang, Q. Ma, X. Ren, Y. Gao, Z. Wang, Z. Guo and C. Zhang, Energy Environ. Sci., 2023, 16, 3181 DOI: 10.1039/D3EE01360J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements