Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries
Abstract
With the rapid growth of the global electric vehicle market and increasing demand for the enhanced user experience of portable electronics, the development of high-performance lithium-ion batteries (LIBs) with fast-charging capability has become an inevitable trend. However, there are critical technological obstacles for the utilization of mainstream graphite anodes in LIBs such as capacity degradation and safety hazards during fast-charging. Herein, this review summarizes the current advancements, fundamental principles, key strategies, and challenging perspectives related to graphite anodes for achieving fast-charging LIBs. First, by uncovering the lithium intercalation mechanism of graphite anodes and the enigmatic interface between graphite anodes and electrolytes, we analyze the main challenges faced by fast-charging graphite anodes. Then, we outline the key strategies for enabling fast-charging LIBs, focusing on graphite material design and electrolyte optimization. Finally, we propose promising research directions and key perspectives for fast-charging graphite anodes, providing inspiration for further commercialization of fast-charging LIBs.