Issue 9, 2023

Self-regenerable clay polymer nanocomposite for organophosphate adsorption and degradation

Abstract

The presence of organophosphates in water has driven numerous studies to address organophosphate treatment, with adsorption being one of the most common methods. However, a holistic approach, pollutant adsorption and degradation by sorbent, sorbent reuse, efficiency, and selectivity, and the coexistence of dissolved organic matter (DOM) in water, was not pursued. We aimed to develop a self-regenerable clay–polymer nanocomposite (CPN), based on substituting an active oxime group on the polymer, to study its organophosphate degradation kinetics, mechanism, and efficiency in the presence of DOM. CPN characterization suggests that upon polymer immobilization, not only did oxime remain deprotonated and therefore active, but pKa was also reduced in comparison to the “free” polymer. The degradation kinetics of diazinon and paraoxon was relatively fast, with 70 and 40% degradation, respectively, at pH 7.6 and complete degradation at pH 9.6 within 30 hours. Based on kinetics results and the effect of pH on organophosphate adsorption and degradation, we suggested a three-step mechanism for diazinon and paraoxon degradation. The reuse of the CPN, five cycles of organophosphate degradation by the same CPN, was extremely impressive, with 90% diazinon degradation. Remarkably, on top of the successful diazinon and paraoxon degradation, in the presence of high DOM concentrations, the CPN efficiently removed 85% DOM. The simultaneous organophosphate degradation and DOM removal were attributed to the unique chemical structure of the CPN, which contains two independent sites, a negative functional group (oxime) for degradation and a positive functional group (pyridinium) for DOM adsorption.

Graphical abstract: Self-regenerable clay polymer nanocomposite for organophosphate adsorption and degradation

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2023
Accepted
28 Jul 2023
First published
02 Aug 2023

Environ. Sci.: Nano, 2023,10, 2489-2499

Self-regenerable clay polymer nanocomposite for organophosphate adsorption and degradation

O. B. Zusman and Y. G. Mishael, Environ. Sci.: Nano, 2023, 10, 2489 DOI: 10.1039/D3EN00246B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements