Issue 2, 2023

Different ratios of DHA/EPA reverses insulin resistance by improving adipocyte dysfunction and lipid disorders in HFD-induced IR mice

Abstract

Objective: Insulin resistance (IR) is linked to the development of diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVDs). Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from fish oils (FOs) were used to investigate their potential in high-fat diet (HFD)-induced IR mice under different ratios. Methods: A total of 84 male C57BL/6J (6 weeks old) mice were fed with HFD containing 45% kcal from fat for 16 weeks to establish the IR model. The IR mice were then fed with HFD or HFD + 4% DHA/EPA with different ratios (3 : 1, 1.5 : 1, 1 : 1, 1 : 1.5, 1 : 3, respectively) for another 12 weeks. During the experiment, the CON group (n = 12) was set to feed with a basic diet containing 10% kcal from fat. Results: HFD feeding for 16 weeks reduced insulin sensitivity and accelerated hypertrophy of white adipose tissue (WAT). Different ratios of DHA/EPA except for 1 : 1 decreased the HOMA-IR index, average area of adipocytes, and serum MDA, but increased the protein expression of PI3K. All ratios of DHA/EPA increased the protein expression of IRS-1, GLUT4, and adiponectin. Moreover, dietary DHA/EPA changed serum fatty acid (FA) composition by increasing the serum concentration of n-3 PUFAs. DHA/EPA supplements also improved serum lipid profiles (TG/TC/LDL-c/HDL-c, FFA) and reduced the hepatic steatosis area. Conclusions: The results indicate that an appropriate higher ratio of DHA (1.5 : 1) in DHA/EPA supplementation is recommended for IR prevention.

Graphical abstract: Different ratios of DHA/EPA reverses insulin resistance by improving adipocyte dysfunction and lipid disorders in HFD-induced IR mice

Supplementary files

Article information

Article type
Paper
Submitted
10 Sep 2022
Accepted
10 Dec 2022
First published
12 Dec 2022

Food Funct., 2023,14, 1179-1197

Different ratios of DHA/EPA reverses insulin resistance by improving adipocyte dysfunction and lipid disorders in HFD-induced IR mice

S. Yu, Q. Xie, W. Tan, M. Hu, G. Xu, X. Zhang, G. Xie and L. Mao, Food Funct., 2023, 14, 1179 DOI: 10.1039/D2FO02686D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements