The protective role of microbiota in the prevention of MPTP/P-induced Parkinson's disease by resveratrol†
Abstract
Parkinson's disease (PD) is a tricky neurodegenerative disease characterized with motor deficits and gastrointestinal (GI) dysfunction. Gut microbiota disturbance is reported to be involved in the clinical phenotypes of PD and its pathogenesis through the brain–gut–microbiota axis. Resveratrol is a natural polyphenol that possesses various biological activities in alleviating many diseases, including PD. The present study was aimed to investigate the role of gut microbiota in resveratrol-treated PD mice. A chronic mouse model of PD was generated via the injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid (MPTP/P) for 5 consecutive weeks. Resveratrol was orally administered once a day (30 mg kg−1 d−1) for a total of 8 weeks. From the 6th week to the 8th week, fecal microbiota transplantation (FMT) was performed from resveratrol-treated PD mice to PD mice to evaluate the contribution of resveratrol-shaped microbiota in the alleviation of PD. The results showed that FMT from resveratrol-shaped microbiota remarkably alleviated the mice phenotype from PD progression, including increased latency in the rotarod, shortened beam walking time, increased the number of tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta (SNpc) and enriched TH-positive fiber density in the striatum. Further experiments revealed that FMT could ameliorate the GI dysfunction by increasing the small intestinal transport rate and the colon length, decreasing the relative abundances of inflammatory cytokines (TNF-α, IL-6 and IL-1β) in colon epithelial tissue. The 16S rDNA sequencing indicated that FMT attenuated the gut microbial dysbiosis in PD mice by increasing the abundances of Prevotellaceae, Rikenellaceae, Erysipelotrichaceae, Blautia and Alistipes, lowering the ratio of Fimicutes/Bacteroidetes, and decreasing the abundances of Lachnospiraceae and Akkermansia. Therefore, results in this study demonstrated that gut microbiota played a vital role in the prevention of PD progression, and the shaping of the gut microbiota was the pharmacological mechanism of resveratrol in alleviating the phenotype of Parkinson's disease in PD mice.