Issue 15, 2023

Integrated gut microbiota and fecal metabolome analyses of the effect of Lycium barbarum polysaccharide on d-galactose-induced premature ovarian insufficiency

Abstract

Premature ovarian insufficiency (POI) has become one of the greatest health threats to the reproduction of women during their fertile age. Lycium barbarum polysaccharides (LBPs) are known for anti-aging and reproductive protective functions. Here, we investigated the protective effect of LBP on POI mice and revealed its possible mechanism by a combination of 16S rRNA sequencing and metabolomics analysis. In the current study, female C57BL/6J mice treated with D-galactose were used as a model to investigate the reversal effect of LBP on the degenerative ovarian function. The ameliorative effect of LBP on POI was evaluated from the estrous cycle, ovarian reserve, serum sex hormone levels, and fertility testing. Additionally, 16S rRNA gene sequencing and untargeted metabolomics were integrated to analyze the effects of LBP on the gut microbiota and fecal metabolic profile in the POI mice. The results showed that LBP administration significantly increased the total number of follicles and the number of follicles at different developmental stages in the POI mice. In addition, LBP was effective in reducing the serum levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), regularizing the disordered estrous cycle, and increasing the number of offspring of the POI mice. The results from 16S rRNA sequencing showed that LBP had beneficial effects on the composition and structure of the gut microbiota in the POI mice. In a metabolomics study, a total of 23 metabolites were finally identified as potential biomarkers of POI, and multiple pathways were regulated after the treatment of LBP, especially the arginine biosynthesis, glycerophospholipid metabolism and steroid hormone biosynthesis pathways. Pearson's correlation analysis showed that the regulation effect of LBP on metabolites was closely related to Faecalibaculum, Bilophila and Anaerofustis in the gut microbiota. In summary, the results demonstrated that LBP could improve the ovarian reserve and provides evidence both on the gut microbiota and metabolism, which provide beneficial support for the applications of LBP in female ovarian function degeneration.

Graphical abstract: Integrated gut microbiota and fecal metabolome analyses of the effect of Lycium barbarum polysaccharide on d-galactose-induced premature ovarian insufficiency

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2023
Accepted
29 Jun 2023
First published
18 Jul 2023

Food Funct., 2023,14, 7209-7221

Integrated gut microbiota and fecal metabolome analyses of the effect of Lycium barbarum polysaccharide on D-galactose-induced premature ovarian insufficiency

H. Zheng, X. Liang, H. Zhou, T. Zhou, X. Liu, J. Duan, J. Duan and Y. Zhu, Food Funct., 2023, 14, 7209 DOI: 10.1039/D3FO01659E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements