Issue 17, 2023

Hypoglycemic effect of Nitraria tangutorum fruit by inhibiting glycosidase and regulating IRS1/PI3K/AKT signalling pathway and its active ingredient identification by UPLC-MS

Abstract

The hypoglycemic effect of NTB-40 (40% ethanol fraction of Nitraria tangutorum fruit) in type I/II diabetic mice and its underlying mechanism and active ingredient structure were investigated. The postprandial blood glucose (PBG) lowering effect of NTB-40 treatment was confirmed by maltose, starch, and sucrose tolerance tests in alloxan-induced DM mice and sucrase and maltase inhibitory activities in vitro. More importantly, long-term dosing experiments in high-fat diet-STZ-induced diabetic mice further demonstrated that NTB-40 intervention could improve glycolipid metabolism disorder and insulin resistance (IR) by maintaining glucose homeostasis (FBG, OGTT, ITT, FINS, and HOMA-IR) and lipid homeostasis (TC, TG, HDL-C, LDL-C, and FFA), reducing inflammation (IL-6, IL-1β, and TNF-α) and oxidative stress (SOD and MDA), ameliorating the liver's histological structural abnormalities, and modulating the IRS1/PI3K/AKT signaling pathway and downstream targets (FOXO1, GSK3β, GLUT4) for decreasing hepatic gluconeogenesis and promoting glycogen synthesis and glucose uptake. All these results indicated that NTB-40 had an anti-diabetic effect by modulating the IRS1/PI3K/AKT signaling pathway and inhibiting α-glucosidase activity. Finally, the main chemical components of NTB-40, including phenolic acids, flavonoids, and alkaloids, were assigned by UPLC-Triple-TOF MS/MS.

Graphical abstract: Hypoglycemic effect of Nitraria tangutorum fruit by inhibiting glycosidase and regulating IRS1/PI3K/AKT signalling pathway and its active ingredient identification by UPLC-MS

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2023
Accepted
15 Jul 2023
First published
18 Jul 2023

Food Funct., 2023,14, 7869-7881

Hypoglycemic effect of Nitraria tangutorum fruit by inhibiting glycosidase and regulating IRS1/PI3K/AKT signalling pathway and its active ingredient identification by UPLC-MS

S. Jiang, L. Wang, W. Jia, D. Wu, L. Wu, X. Zhao, L. Mei, Y. Tao and H. Yue, Food Funct., 2023, 14, 7869 DOI: 10.1039/D3FO02495D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements