Issue 21, 2023

Lactate induces the development of beige adipocytes via an increase in the level of reactive oxygen species

Abstract

Recent studies have indicated that lactate acts as a signaling molecule in various tissues. We previously demonstrated that intake of an amino acid mixture combined with exercise synergistically induced beige adipocyte formation in inguinal white adipose tissue (iWAT) in mice. Moreover, plasma lactate levels remained significantly elevated in the amino acid mixture + exercise group even 16 h after exercise, indicating that a lactate-mediated pathway may be involved in the induction of beige adipocyte formation. Against this background, we hypothesized that oral intake of lactate would induce beige adipocyte formation via the lactate signaling pathway without exercise. Furthermore, if oral intake of lactate can produce the same effect as exercise, lactate might be used as a food-derived exercise replacement-factor. Oral intake of lactate (100 mM in drinking water) for 4 weeks significantly induced beige adipocyte formation in iWAT in mice as well as a significant elevation of lactate transporter (monocarboxylic acid transporter 1; MCT1) and lactate dehydrogenase B levels. Administration of lactate to adipocytes significantly increased reactive oxygen species (ROS) and superoxide levels and the NADH/NAD+ ratio. The induction of lactate-mediated uncoupling protein 1 (UCP1) expression and ROS production were significantly suppressed by antioxidant treatment or inhibition of MCT1. However, UCP1 induction was not significantly affected by the inhibition of lactate receptor (hydroxycarboxylic acid receptor 1). These findings suggest that lactate-mediated ROS production induces beige adipocyte formation, and thus oral intake of lactate may confer some benefits of exercise without the need to perform exercise.

Graphical abstract: Lactate induces the development of beige adipocytes via an increase in the level of reactive oxygen species

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2023
Accepted
29 Sep 2023
First published
06 Oct 2023

Food Funct., 2023,14, 9725-9733

Lactate induces the development of beige adipocytes via an increase in the level of reactive oxygen species

N. Esaki, T. Matsui and T. Tsuda, Food Funct., 2023, 14, 9725 DOI: 10.1039/D3FO03287F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements