Issue 17, 2023

Recent progress in CO2 conversion into organic chemicals by molecular catalysis

Abstract

The chemical conversion of carbon dioxide (CO2) into high-value chemicals or fuels is exceedingly attractive due to its green and sustainable features. However, practical technologies on scale utilization of CO2 are few, and nearly no new industrial processes on the topic have emerged over the years. The current bottlenecks, e.g., low efficiency and atom economy, seriously restrict the process development. In recent studies, the catalytic activation of CO2 and/or substrate has been revealed to play a significant role in the promotion of CO2 functionalization to valuable chemicals, including the representative reactions of epoxides/propargyl alcohols/propargylamines with CO2, multicomponent cascade reactions, N-formylation of amines with CO2 and hydrosilanes, and unactivated C–H bond carboxylation. Herein, recent significant advances (2017–2022) on the effective chemical fixation of CO2 through molecular activation or synergistic activation strategies in homogeneous systems are presented. The superiority of molecular activation in thermochemical catalysis is shown in a wide range of CO2 transformations. Through CO2/substrate activation and catalysis with well-developed metal or organocatalysts, valuable chemicals are successfully attained with great efficiency. The new progress will provide significant guidance to promote the effective and sustainable utilization of CO2.

Graphical abstract: Recent progress in CO2 conversion into organic chemicals by molecular catalysis

Article information

Article type
Critical Review
Submitted
01 Jun 2023
Accepted
04 Aug 2023
First published
04 Aug 2023

Green Chem., 2023,25, 6538-6560

Recent progress in CO2 conversion into organic chemicals by molecular catalysis

Q. Song, R. Ma, P. Liu, K. Zhang and L. He, Green Chem., 2023, 25, 6538 DOI: 10.1039/D3GC01892J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements