Issue 19, 2023

Highly efficient biosynthesis of 2,4-dihydroxybutyric acid by a methanol assimilation pathway in engineered Escherichia coli

Abstract

2,4-Dihydroxybutyric acid (2,4-DHB) is an important fine chemical, which can be used as a precursor in the production of important chemicals. Methanol, as an attractive C1 compound, is an ideal nonfood sugar feedstock for biomanufacturing. In this study, we reported for the first time the biosynthesis of 2,4-DHB in engineered Escherichia coli from a mixture of methanol and glucose. In this process, methanol dehydrogenase was used to convert methanol into formaldehyde, and the key intermediate 2-keto-4-hydroxybutyric acid was synthesized through the condensation of formaldehyde and pyruvate derived from glycolysis by pyruvate-dependent aldolase, which was subsequently transformed into the target product 2,4-DHB by an enzymatic hydrogenation reaction. The new pathway demonstrated the feasibility of producing 2,4-DHB from methanol and glucose in E. coli. For improving the production of 2,4-DHB step by step, dehydrogenases and aldo–keto reductases with higher activity towards 2,4-DHB were screened, and the pyruvate degradation pathway genes were knocked out to enhance the flux from pyruvate towards 2,4-DHB biosynthesis, resulting in the strain DHB9 with about 10-fold improvement compared to the initial strain DHB4. Additionally, the methanol dehydrogenase MDHCn with higher enzymatic activity was obtained by screening. The mutant MDHCn (G48F) with improved activity in vitro was obtained by rational analysis of MDHCn, and the results showed that the enzymatic activity of MDHCn (G48F) increased 3-fold in vitro compared with that of the wild type. Finally, on the basis of the above work, the best engineered strain DHB13 was constructed by knocking out the gene (frmRAB) responsible for the conversion of formaldehyde to formic acid, and the target product 2,4-DHB was accumulated up to 14.6 g L−1 in a 5 L bioreactor. To date, the highest concentration of 2,4-DHB has been achieved in this work, which is promising to make the bioprocess feasible from an economic perspective. Moreover, one glucose molecule and two methanol molecules can be bio-transformed into two 2,4-DHB molecules with 100% conversion of carbon atoms in theory, showing the high carbon atom economy of the novel synthetic metabolic pathway.

Graphical abstract: Highly efficient biosynthesis of 2,4-dihydroxybutyric acid by a methanol assimilation pathway in engineered Escherichia coli

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2023
Accepted
16 Aug 2023
First published
18 Aug 2023
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2023,25, 7662-7672

Highly efficient biosynthesis of 2,4-dihydroxybutyric acid by a methanol assimilation pathway in engineered Escherichia coli

X. Dong, C. Sun, J. Guo, X. Ma, M. Xian and R. Zhang, Green Chem., 2023, 25, 7662 DOI: 10.1039/D3GC02083E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements