Issue 3, 2023

Label-free microfluidic device reveals single cell phagocytic activity and screens plant medicine rapidly

Abstract

Phagocytic activity is an extremely important indicator that evaluates medicinal effects related to the immune system and functions to investigate the mechanism of how a drug works under conditions such as immunological regulation, immune tolerance, inflammation, cancer, etc. Current techniques based on flow cytometry, fluorescence imaging or numbering CFUs after cell lysis for detecting phagocytosis suffer from long terms of bacteria culturing and complex preparation steps for fluorescent labeling or require a large amount of cell samples to be tested. This study aims at developing a simple and fast method for testing the phagocytic activity of unlabeled and native cells, taking advantage of very high-resolution direct current insulator-based dielectrophoresis (DC-iDEP). The properties of cells are characterized by native whole cell biophysical properties. This strategy not only eliminates the time-consuming bacterial culture work after cell lysis, but also lowers the expenses of bacteria labeling. The introduction of microfluidics reduces the sample volume or reagent needed. The analysis of the biophysical property distributions of native cells and medicine treated cells may lead to a less expensive and rapid tool for evaluating medicinal effects. Furthermore, berberine was investigated for decreasing the phagocytic activity of macrophages and used for comparison of activities. This study works on establishing a label-free, unbiased, and non-destructive method to determine cell phagocytic activity and investigate its use in evaluating medicinal effects on phagocytosis in a single step within a short time.

Graphical abstract: Label-free microfluidic device reveals single cell phagocytic activity and screens plant medicine rapidly

Article information

Article type
Paper
Submitted
03 Nov 2022
Accepted
11 Jan 2023
First published
12 Jan 2023

Lab Chip, 2023,23, 553-559

Label-free microfluidic device reveals single cell phagocytic activity and screens plant medicine rapidly

Y. Liu, M. Wang, R. Liu and F. Qiu, Lab Chip, 2023, 23, 553 DOI: 10.1039/D2LC01021F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements