Issue 20, 2023

Modeling mechanisms underlying differential inflammatory responses to COVID-19 in type 2 diabetes using a patient-derived microphysiological organ-on-a-chip system

Abstract

Background: COVID-19 pandemic has caused more than 6 million deaths worldwide. Co-morbid conditions such as Type 2 Diabetes (T2D) have increased mortality in COVID-19. With limited translatability of in vitro and small animal models to human disease, human organ-on-a-chip models are an attractive platform to model in vivo disease conditions and test potential therapeutics. Methods: T2D or non-diabetic patient-derived macrophages and human liver sinusoidal endothelial cells were seeded, along with normal hepatocytes and stellate cells in the liver-on-a-chip (LAMPS – liver acinus micro physiological system), perfused with media mimicking non-diabetic fasting or T2D (high levels of glucose, fatty acids, insulin, glucagon) states. The macrophages and endothelial cells were transduced to overexpress the SARS-CoV2-S (spike) protein with appropriate controls before their incorporation into LAMPS. Cytokine concentrations in the efflux served as a read-out of the effects of S-protein expression in the different experimental conditions (non-diabetic-LAMPS, T2D-LAMPS), including incubation with tocilizumab, an FDA-approved drug for severe COVID-19. Findings: S-protein expression in the non-diabetic LAMPS led to increased cytokines, but in the T2D-LAMPS, this was significantly amplified both in the number and magnitude of key pro-inflammatory cytokines (IL6, CCL3, IL1β, IL2, TNFα, etc.) involved in cytokine storm syndrome (CSS), mimicking severe COVID-19 infection in T2D patients. Compared to vehicle control, tocilizumab (IL6-receptor antagonist) decreased the pro-inflammatory cytokine secretion in T2D-COVID-19-LAMPS but not in non-diabetic-COVID-19-LAMPS. Interpretation: macrophages and endothelial cells play a synergistic role in the pathophysiology of the hyper-inflammatory response seen with COVID-19 and T2D. The effect of Tocilizumab was consistent with large clinical trials that demonstrated Tocilizumab's efficacy only in critically ill patients with severe disease, providing confirmatory evidence that the T2D-COVID-19-LAMPS is a robust platform to model human in vivo pathophysiology of COVID-19 in T2D and for screening potential therapeutics.

Graphical abstract: Modeling mechanisms underlying differential inflammatory responses to COVID-19 in type 2 diabetes using a patient-derived microphysiological organ-on-a-chip system

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2023
Accepted
21 Sep 2023
First published
27 Sep 2023

Lab Chip, 2023,23, 4514-4527

Modeling mechanisms underlying differential inflammatory responses to COVID-19 in type 2 diabetes using a patient-derived microphysiological organ-on-a-chip system

V. Negi, D. Gavlock, M. T. Miedel, J. K. Lee, T. Shun, A. Gough, L. Vernetti, A. M. Stern, D. L. Taylor and V. K. Yechoor, Lab Chip, 2023, 23, 4514 DOI: 10.1039/D3LC00285C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements