Bubble-particle dynamics in multiphase flow of capillary foams in a porous micromodel†
Abstract
Surfactant-free capillary foams (CFs) are known to be remarkably tolerant to oil, and possess unique stability and flow properties. These properties result from the presence of oil-and-particle-coated bubbles that are interconnected by a dense particle–oil capillary network. In this work, we present a study of the dynamics of capillary foams flowing through a porous micromodel. We determine that despite the presence of oil–particle networks, CFs can flow through a microporous environment and that above a threshold flowrate, >80% of foam pumped through the micromodel can be recovered. In addition, we highlight the absence of steady state in CF flow and identify the underlying phenomena including the increasing apparent viscosity, reconfigurable flow paths, and intermittent clogging of the micromodel from an oil–particle composite and bubbles trapped in pores. We also characterize bubble dynamics and show that CFs surprisingly exhibit the same bubble generation and destruction mechanisms as classical foams despite the absence of surfactants. Our observations suggest that the porous medium plays a key role in generating uniformly sized bubbles and that capillary foams in a microporous environment tend to reconfigure their flow paths in a manner that may provide opportunities for increased sweep efficiency in enhanced oil recovery.