Issue 24, 2023

A human initial lymphatic chip reveals distinct mechanisms of primary lymphatic valve dysfunction in acute and chronic inflammation

Abstract

Interstitial fluid uptake and retention by lymphatic vessels (LVs) play a role in maintaining interstitial fluid homeostasis. While it is well-established that intraluminal lymphatic valves in the collecting LVs prevent fluid backflow (secondary lymphatic valves), a separate valve system in the initial LVs that only permits interstitial fluid influx into the LVs, preventing fluid leakage back to the interstitium (primary lymphatic valves), remains incompletely understood. Although lymphatic dysfunction is commonly observed in inflammation and autoimmune diseases, how the primary lymphatic valves are affected by acute and chronic inflammation has scarcely been explored and even less so using in vitro lymphatic models. Here, we developed a human initial lymphatic vessel chip where interstitial fluid pressure and luminal fluid pressure are controlled to examine primary lymph valve function. In normal conditions, lymphatic drainage (fluid uptake) and permeability (fluid leakage) in engineered LVs were maintained high and low, respectively, which was consistent with our understanding of healthy primary lymph valves. Next, we examined the effects of acute and chronic inflammation. Under the acute inflammation condition with a TNF-α treatment (2 hours), degradation of fibrillin and impeded lymphatic drainage were observed, which were reversed by treatment with anti-inflammatory dexamethasone. Surprisingly, the chronic inflammation condition (repeated TNF-α treatments during 48 hours) deposited fibrillin to compensate for the fibrillin loss, showing no change in lymphatic drainage. Instead, the chronic inflammation condition led to cell death and disruption of lymphatic endothelial cell–cell junctions, increasing lymphatic permeability and fluid leakage. Our human lymphatic model shows two distinct mechanisms by which primary lymphatic valve dysfunction occurs in acute and chronic inflammation.

Graphical abstract: A human initial lymphatic chip reveals distinct mechanisms of primary lymphatic valve dysfunction in acute and chronic inflammation

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2023
Accepted
13 Nov 2023
First published
14 Nov 2023

Lab Chip, 2023,23, 5180-5194

Author version available

A human initial lymphatic chip reveals distinct mechanisms of primary lymphatic valve dysfunction in acute and chronic inflammation

S. Kraus and E. Lee, Lab Chip, 2023, 23, 5180 DOI: 10.1039/D3LC00486D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements